1,289 research outputs found

    BPS black holes, the Hesse potential, and the topological string

    Full text link
    The Hesse potential is constructed for a class of four-dimensional N=2 supersymmetric effective actions with S- and T-duality by performing the relevant Legendre transform by iteration. It is a function of fields that transform under duality according to an arithmetic subgroup of the classical dualities reflecting the monodromies of the underlying string compactification. These transformations are not subject to corrections, unlike the transformations of the fields that appear in the effective action which are affected by the presence of higher-derivative couplings. The class of actions that are considered includes those of the FHSV and the STU model. We also consider heterotic N=4 supersymmetric compactifications. The Hesse potential, which is equal to the free energy function for BPS black holes, is manifestly duality invariant. Generically it can be expanded in terms of powers of the modulus that represents the inverse topological string coupling constant, gsg_s, and its complex conjugate. The terms depending holomorphically on gsg_s are expected to correspond to the topological string partition function and this expectation is explicitly verified in two cases. Terms proportional to mixed powers of gsg_s and gˉs\bar g_s are in principle present.Comment: 28 pages, LaTeX, added comment

    Investigation of the functional roles of host cell proteins involved in Coronavirus infection using highly specific and scalable RNA interference (RNAi) approach

    Get PDF
    Since its identification in the 1990s, the RNA interference (RNAi) pathway has proven extremely useful in elucidating the function of proteins in the context of cells and even whole organisms. In particular, this sequence-specific and powerful loss-of-function approach has greatly simplified the study of the role of host cell factors implicated in the life cycle of viruses. Here, we detail the RNAi method we have developed and used to specifically knock down the expression of ezrin, an actin binding protein that was identified by yeast two-hybrid screening to interact with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) spike (S) protein. This method was used to study the role of ezrin, specifically during the entry stage of SARS-CoV infection

    A Twist in the Dyon Partition Function

    Get PDF
    In four dimensional string theories with N=4 and N=8 supersymmetries one can often define twisted index in a subspace of the moduli space which captures additional information on the partition function than the ones contained in the usual helicity trace index. We compute several such indices in type IIB string theory on K3 x T^2 and T^6, and find that they share many properties with the usual helicity trace index that captures the spectrum of quarter BPS states in N=4 supersymmetric string theories. In particular the partition function is a modular form of a subgroup of Sp(2,Z) and the jumps across the walls of marginal stability are controlled by the residues at the poles of the partition function. However for large charges the logarithm of this index grows as 1/n times the entropy of a black hole carrying the same charges where n is the order of the symmetry generator that is used to define the twisted index. We provide a macroscopic explanation of this phenomenon using quantum entropy function formalism. The leading saddle point corresponding to the attractor geometry fails to contribute to the twisted index, but a Z_n orbifold of the attractor geometry produces the desired contribution.Comment: LaTeX file, 35 pages; v2: references adde

    Nernst branes from special geometry

    Get PDF
    We construct new black brane solutions in U(1)U(1) gauged N=2{\cal N}=2 supergravity with a general cubic prepotential, which have entropy density sT1/3s\sim T^{1/3} as T0T \rightarrow 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature TT and the chemical potential μ\mu. Our solutions interpolate between hyperscaling violating Lifshitz geometries with (z,θ)=(0,2)(z,\theta)=(0,2) at the horizon and (z,θ)=(1,1)(z,\theta)=(1,-1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to (z,θ)=(3,1)(z,\theta)=(3,1).Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in Section 3. No changes to conclusions. References adde

    Nernst branes in gauged supergravity

    Full text link
    We study static black brane solutions in the context of N = 2 U(1) gauged supergravity in four dimensions. Using the formalism of first-order flow equations, we construct novel extremal black brane solutions including examples of Nernst branes, i.e. extremal black brane solutions with vanishing entropy density. We also discuss a class of non-extremal generalizations which is captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor typographic changes, v3: added some clarifying remarks, version published in JHE

    Subtracted Geometry From Harrison Transformations

    Full text link
    We consider the rotating non-extremal black hole of N=2 D=4 STU supergravity carrying three magnetic charges and one electric charge. We show that its subtracted geometry is obtained by applying a specific SO(4,4) Harrison transformation on the black hole. As previously noted, the resulting subtracted geometry is a solution of the N=2 S=T=U supergravity.Comment: 11 pages main text; total 24 pages; Latex file; v2 typos corrected + ref added; v3 results significantly strengthened, changes in section 3.1 and appendix C, version to appear in JHE

    Evidence for Duality of Conifold from Fundamental String

    Full text link
    We study the spectrum of BPS D5-D3-F1 states in type IIB theory, which are proposed to be dual to D4-D2-D0 states on the resolved conifold in type IIA theory. We evaluate the BPS partition functions for all values of the moduli parameter in the type IIB side, and find them completely agree with the results in the type IIA side which was obtained by using Kontsevich-Soibelman's wall-crossing formula. Our result is a quite strong evidence for string dualities on the conifold.Comment: 24 pages, 13 figures, v2: typos corrected, v3: explanations about wall-crossing improved and figures adde

    First-order flows and stabilisation equations for non-BPS extremal black holes

    Get PDF
    We derive a generalised form of flow equations for extremal static and rotating non-BPS black holes in four-dimensional ungauged N = 2 supergravity coupled to vector multiplets. For particular charge vectors, we give stabilisation equations for the scalars, analogous to the BPS case, describing full known solutions. Based on this, we propose a generic ansatz for the stabilisation equations, which surprisingly includes ratios of harmonic functions.Comment: 27 pages; v2: presentation improved and references added as in the published versio

    Definitive and adjuvant radiotherapy for sinonasal squamous cell carcinomas: a single institutional experience

    Get PDF
    Background: The aim of this study was to evaluate the disease outcomes of patients treated with definitive and adjuvant radiotherapy for squamous cell carcinomas of the nasal cavity and paranasal sinuses in a single institution. Methods: Between 2007–2012 patients were retrospectively identified from electronic databases who had undergone surgery and adjuvant radiotherapy or definitive radiotherapy for sinonasal squamous cell carcinomas with curative intent. Results: Fourty three patients with sinonasal squamous cell carcinoma were identified (22 nasal cavity, 21 paranasal sinuses). 31/43 (72 %) had T3 or T4 disease; nodal stage was N0 in 38, N1 in 4, Na/b in 0 and N2c in 1 patient. Median age was 67 years (range 41–86). 18 (42 %) received definitive and 25 (58 %) adjuvant radiotherapy. Radiotherapy was delivered using either conventional radiotherapy (n = 39) or intensity modulated radiotherapy (n = 4). Elective neck radiotherapy was delivered to two patients. Chemotherapy was delivered to 6/43 (14 %) of patients. Two-year local control, regional control, distant metastases free survival, progression free survival, cause specific survival and overall survival were 81 %, 90 %, 95 %, 71 %, 84 % and 80 % respectively. There was no significant difference in outcome comparing patients who underwent surgery and adjuvant radiotherapy with patients receiving definitive radiotherapy (2 year locoregional disease free survival 75 % and 70 % respectively, p = 0.98). Pooly differentiated tumours were significantly associated with inferior disease outcomes. Local, regional, combined local and regional, and distant failure occurred in 7 (16 %), 3 (7 %), 1 (2 %) and 2 (5 %) of patients; all 3 regional recurrences were in patients with nasal cavity squamous cell carcinomas who had not undergone elective neck treatment. Conclusions: Definitive or adjuvant radiotherapy provides an effective treatment for sinonasal malignancies. The main pattern of failure remains local, suggesting the need for investigation of intensified local therapy. Whilst remaining uncommon, the cases of regional failure mean that the merits of elective lymph node treatment should be considered on an individual basis
    corecore